
Crapaud vert vs Sangsues: une histoire de survie

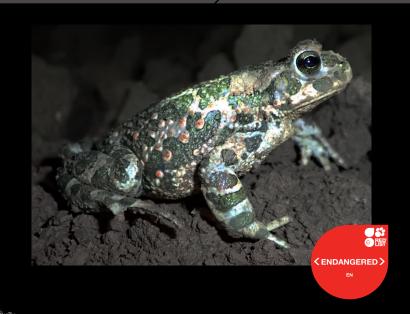
Thèse : Rôle écologique des bassins d'orage routiers pour les amphibiens

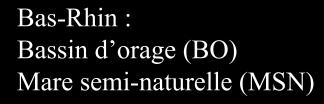
Bassins d'orage routiers

- Eaux de ruissellement
 - Collecter
 - Stocker
 - Dépolluer
- Faune
 - Amphibiens

Notions de piège écologique

- Habitat
 - Attractivité forte \rightarrow indices environnementaux erronés
 - Faible qualité
 - Fitness faible → survie/reproduction


Introduction > Méthodes > Résultats > Discussion > Conclusion


Modèle d'étude

Crapaud vert (*Bufotes viridis*)

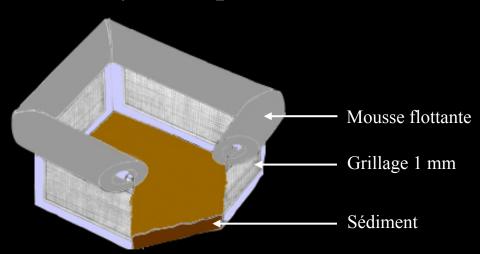
- Espèce pionnière
 - Faible profondeur
 - Peu de végétation

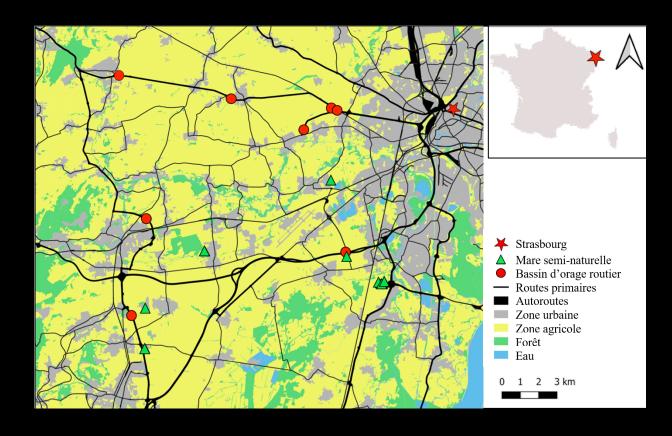
Différentes études

1. Têtards en milieu naturel

2. Têtards en conditions 3. Adultes en milieu contrôlées

naturel


Photo Didier Moerschel©

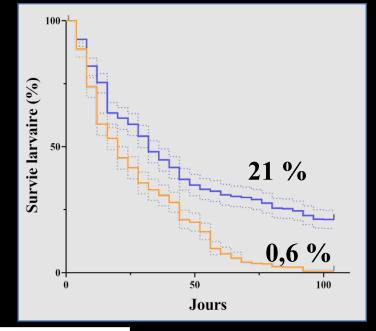


Introduction | Méthodes > Résultats > Discussion > Conclusion

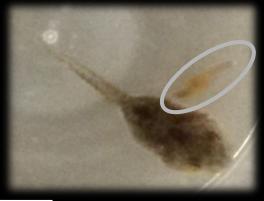
1. Têtards en milieu naturel

- 8 MSN & 8 BO (juin à juillet 2020)
 - 2 enclos par site
 - 30 têtards par enclos
- Caractérisation des sites
 - Biotique & abiotique
 - Analyse de polluants

Suivi des effectifs


1. Têtards en milieu naturel

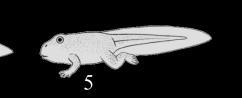
Développement des têtards en enclos


Survie (Log-rank, pval = 0,01)

Caractéristiques BO vs MSN (AFMD)

- Pollution :
 - Eau pas de différence
 - Sédiment plus pollué
- Sangsues (Helobdella stagnalis)
 - Présence systématique dans BO
 - Absence en MSN

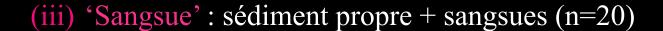
Polluant sédiment		
(mg/kg DM)	BO	MSN
Pb	37,3	14,7
Zn	846,0	46,3
Cu	132,1	13,8



2. Têtards en conditions contrôlées

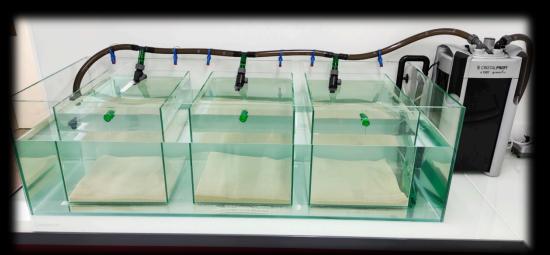
• Prélèvement de pontes (mai 2021)

- Incubation au laboratoire (T=20°C)
- Suivi du développement & survie (4 conditions)



Les 4 conditions expérimentales

- Trois réplicas/condition, 40 têtards/réplica
 - (i) 'Contrôle': sédiment propre



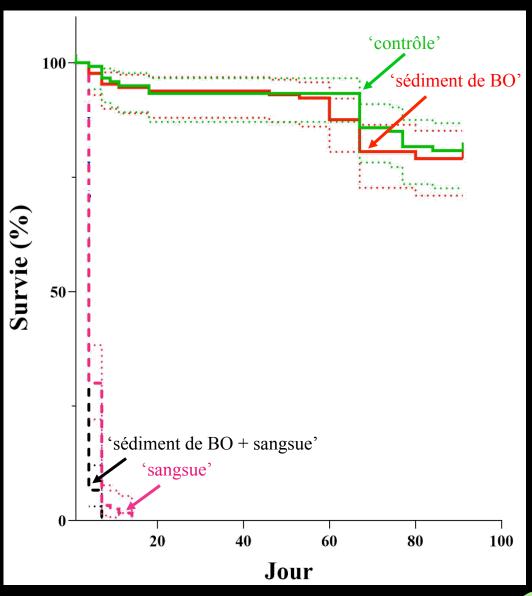
(iii) 'BO': sédiment de BO

(iv) 'BO + sangsue': sédiment de BO + sangsues (n=20)

Prédictions:

- i. Survie en (i) plus importante
- ii. Survie impactée par la presence de polluants dans le sediment et/ ou la presence de sangsues

Suivi des effectifs



2. Têtards en conditions contrôlées

- Survie
 - 0% avec sangsue (prédation directe)

Pas d'impact de la pollution du sédiment (Log-rank, pval > 0,05)

Synthèse des résultats

Effet		En conditions naturelles	En conditions contrôlées
Survie larvaire	Plus faible en BO		
45 nm	Impactée par une sangsue (Helobdella stagnalis)		
	Pollution		
	• Eau		
	• Sédiment		

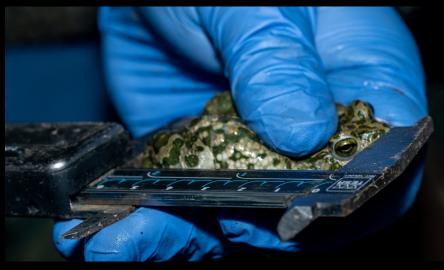
Synthèse des résultats

Effet		En conditions naturelles	En conditions contrôlées	Littérature
Survie larvaire	Plus faible en BO	Oui (quasiment nulle)	Oui (nulle)	Oui, autres espèces
	ETPOURLES ADULTES?			Oui, autres espèces amphibiens/sangsues Oui Oui (autres espèces)
	• Sédiment	?	Non	Oui (autres espèces)

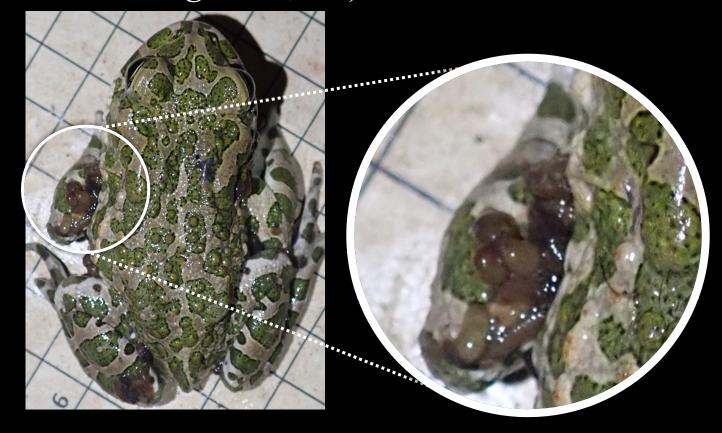
Les bassins d'orage semble être des pièges écologique pour le Crapaud vert surtout à cause d'une sangsue

Introduction | Méthodes > Résultats > Discussion > Conclusion

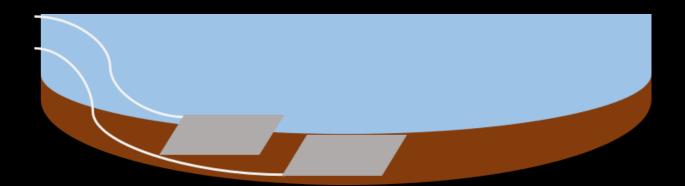
3. Adultes en milieu naturel


- Capture Marquage Recapture de 2020 à 2022
 - 14 bassins d'orage
 - 19 mares semi-naturelles

	Mâle	Femelle
ВО	886	98
MSN	708	79
Total		177



• Sangsues (Helobdella stagnalis; Hs) sur adultes


- Étude préliminaire : occurrence et abondance de sangsues
 - 11 mares semi-naturelles
 - 11 bassins d'orage

- 2 plaques immergées par site
- → Présence/absence

x 3 passages

→ Comptage

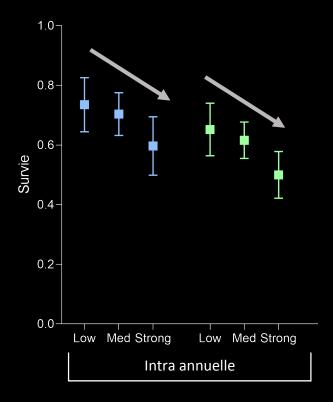
- Estimation de survie/recrutement
 - Modèle de Cormack-Jolly-Seber (E-surge)
 - 2 classes de taille : 'classe 1' < 60mm < 'classe 2'

- Abondance et occurrence de sangsues (*Hs*)
 - Présence dans 1 mare et 10 bassins d'orage
 - Abondance moyenne:
 - BO = $58 \pm 20,5$ individus

Impact sur les adultes?

Analyse CMR bassin d'orage centré

• 3 classes d'abondance : < 11, [11 ; 69] et 69 <

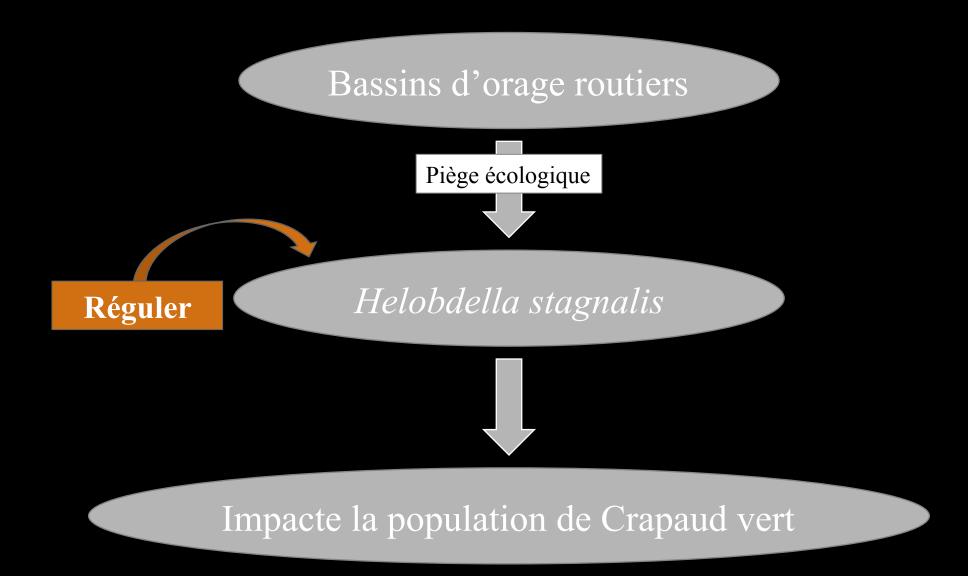


Classe 1

Classe 2

3. Adultes en milieu naturel

- Sélection de modèle (QAICc)
 - Survie : φ(taille + abondance)
 - Recrutement : r(abondance)


- Hs semble impacter la survie adulte des Crapauds verts
 - Parasitisme encore non démontré (simple phorésie ?)

Limiter l'abondance de sangsue

- Recrutement inter annuelle important, pourquoi?
 - Perte de marquage ?
 - Sites fantômes?
 - Saut de reproduction ?

Perspectives

- Méthode de lutte contre Hs
 - Assèchement
 - Curage
 - Autres?

- Sites temporaires
 - Prairies/champs inondés
 - Zones de chantiers

- 4° année de suivi
 - Saut de reproduction

Merci pour votre attention

Université

de Strasbourg

École Doctorale des Sciences de la Vie et de la Santé

